Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 12: 752557, 2021.
Article in English | MEDLINE | ID: covidwho-1789371

ABSTRACT

Objective: To analyze and compare different clinical, laboratory, and magnetic resonance imaging characteristics between pediatric and adult patients with first-attack myelin oligodendrocyte glycoprotein antibody disease (MOGAD) and to explore predictive factors for severity at disease onset. Methods: Patients diagnosed with MOGAD at the First Affiliated Hospital of Zhengzhou University from January 2013 to August 2021 were enrolled in this retrospective study. Age at disease onset, sex, comorbidities, laboratory tests, magnetic resonance imaging (MRI) characteristics, and Expanded Disability Status Scale (EDSS) scores were collected and analyzed. The association between risk factors and initial EDSS scores at disease onset was analyzed using logistic regression models and Spearman correlation analyses. A receiver-operating characteristic (ROC) curve analysis was used to evaluate the predictive ability of the uric acid and homocysteine (Hcy) levels for the severity of neurological dysfunction at the onset of MOGAD. Results: Sixty-seven patients (female, n=34; male, n=33) with first-attack MOGAD were included in this study. The mean age at onset was 26.43 ± 18.22 years (range: 3-79 years). Among patients <18 years of age, the most common presenting symptoms were loss of vision (36.0%), and nausea and vomiting (24.0%), and the most common disease spectrum was acute disseminated encephalomyelitis (ADEM) (40.0%). Among patients aged ≥18 years, the most common presenting symptoms were loss of vision (35.7%), paresthesia (33.3%), and paralysis (26.2%), and the most common disease spectrum was optic neuritis (35.7%). The most common lesions were cortical gray matter/paracortical white matter lesions in both pediatric and adult patients. Uric acid [odds ratio (OR)=1.014; 95% confidence interval (CI)=1.006-1.022; P=0.000] and serum Hcy (OR=1.125; 95% CI=1.017-1.246; P=0.023) levels were significantly associated with the severity of neurological dysfunction at disease onset. Uric acid levels (r=0.2583; P=0.035) and Hcy levels (r=0.3971; P=0.0009) were positively correlated with initial EDSS scores. The areas under the ROC curve were 0.7775 (95% CI= 0.6617‒0.8933; P<0.001) and 0.6767 (95% CI=0.5433‒0.8102, P=0.014) for uric acid and Hcy levels, respectively. Conclusion: The clinical phenotype of MOGAD varies in patients of different ages. The most common disease spectrum was ADEM in patients aged<18 years, while optic neuritis was commonly found in patients aged ≥18 years. The uric acid and Hcy levels are risk factors for the severity of neurological dysfunction at disease onset in patients with first-attack MOGAD.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/epidemiology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adolescent , Adult , Age of Onset , Aged , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Autoimmune Diseases of the Nervous System/diagnostic imaging , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/metabolism , Biomarkers , Central Nervous System/diagnostic imaging , Cerebrospinal Fluid Proteins/analysis , Child , Child, Preschool , China/epidemiology , Comorbidity , Diagnosis, Differential , Female , Follow-Up Studies , Homocysteine/blood , Humans , Immunosuppressive Agents/therapeutic use , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , Severity of Illness Index , Single-Blind Method , Uric Acid/blood , Young Adult
2.
Ann Neurol ; 91(3): 342-352, 2022 03.
Article in English | MEDLINE | ID: covidwho-1648414

ABSTRACT

OBJECTIVE: The study was undertaken to assess the impact of B cell depletion on humoral and cellular immune responses to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccination in patients with various neuroimmunologic disorders on anti-CD20 therapy. This included an analysis of the T cell vaccine response to the SARS-CoV-2 Delta variant. METHODS: We investigated prospectively humoral and cellular responses to SARS-CoV-2 mRNA vaccination in 82 patients with neuroimmunologic disorders on anti-CD20 therapy and 82 age- and sex-matched healthy controls. For quantification of antibodies, the Elecsys anti-SARS-CoV-2 viral spike (S) immunoassay against the receptor-binding domain (RBD) was used. IFN-gamma enzyme-linked immunosorbent spot assays were performed to assess T cell responses against the SARS-CoV-2 Wuhan strain and the Delta variant. RESULTS: SARS-CoV-2-specific antibodies were found less frequently in patients (70% [57/82]) compared with controls (82/82 [100%], p < 0.001). In patients without detectable B cells (<1 B cell/mcl), seroconversion rates and antibody levels were lower compared to nondepleted (≥1 B cell/mcl) patients (p < 0.001). B cell levels ≥1 cell/mcl were sufficient to induce seroconversion in our cohort of anti-CD20 treated patients. In contrast to the antibody response, the T-cell response against the Wuhan strain and the Delta variant was more pronounced in frequency (p < 0.05) and magnitude (p < 0.01) in B-cell depleted compared to nondepleted patients. INTERPRETATION: Antibody responses to SARS-CoV-2 mRNA vaccinnation can be attained in patients on anti-CD20 therapy by the onset of B cell repopulation. In the absence of B cells, a strong T cell response is generated which may help to protect against severe coronavirus disease 2019 (COVID-19) in this high-risk population. ANN NEUROL 2022;91:342-352.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adult , Autoimmune Diseases of the Nervous System/blood , Autoimmune Diseases of the Nervous System/epidemiology , B-Lymphocytes/metabolism , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , Middle Aged , Neuroimmunomodulation/immunology , Prospective Studies , SARS-CoV-2/metabolism
3.
Neurotherapeutics ; 18(4): 2397-2418, 2021 10.
Article in English | MEDLINE | ID: covidwho-1509358

ABSTRACT

In the last 25 years, intravenous immunoglobulin (IVIg) has had a major impact in the successful treatment of previously untreatable or poorly controlled autoimmune neurological disorders. Derived from thousands of healthy donors, IVIg contains IgG1 isotypes of idiotypic antibodies that have the potential to bind pathogenic autoantibodies or cross-react with various antigenic peptides, including proteins conserved among the "common cold"-pre-pandemic coronaviruses; as a result, after IVIg infusions, some of the patients' sera may transiently become positive for various neuronal antibodies, even for anti-SARS-CoV-2, necessitating caution in separating antibodies derived from the infused IVIg or acquired humoral immunity. IVIg exerts multiple effects on the immunoregulatory network by variably affecting autoantibodies, complement activation, FcRn saturation, FcγRIIb receptors, cytokines, and inflammatory mediators. Based on randomized controlled trials, IVIg is approved for the treatment of GBS, CIDP, MMN and dermatomyositis; has been effective in, myasthenia gravis exacerbations, and stiff-person syndrome; and exhibits convincing efficacy in autoimmune epilepsy, neuromyelitis, and autoimmune encephalitis. Recent evidence suggests that polymorphisms in the genes encoding FcRn and FcγRIIB may influence the catabolism of infused IgG or its anti-inflammatory effects, impacting on individualized dosing or efficacy. For chronic maintenance therapy, IVIg and subcutaneous IgG are effective in controlled studies only in CIDP and MMN preventing relapses and axonal loss up to 48 weeks; in practice, however, IVIg is continuously used for years in all the aforementioned neurological conditions, like is a "forever necessary therapy" for maintaining stability, generating challenges on when and how to stop it. Because about 35-40% of patients on chronic therapy do not exhibit objective neurological signs of worsening after stopping IVIg but express subjective symptoms of fatigue, pains, spasms, or a feeling of generalized weakness, a conditioning effect combined with fear that discontinuing chronic therapy may destabilize a multi-year stability status is likely. The dilemmas of continuing chronic therapy, the importance of adjusting dosing and scheduling or periodically stopping IVIg to objectively assess necessity, and concerns in accurately interpreting IVIg-dependency are discussed. Finally, the merit of subcutaneous IgG, the ineffectiveness of IVIg in IgG4-neurological autoimmunities, and genetic factors affecting IVIg dosing and efficacy are addressed.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/therapy , Autoimmunity/immunology , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/immunology , Withholding Treatment , Autoantibodies/drug effects , Autoantibodies/immunology , Autoimmunity/drug effects , COVID-19/immunology , COVID-19/therapy , Dose-Response Relationship, Immunologic , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
4.
Neurol Neuroimmunol Neuroinflamm ; 8(5)2021 09.
Article in English | MEDLINE | ID: covidwho-1371991

ABSTRACT

BACKGROUND AND OBJECTIVE: To describe the impact of coronavirus disease 2019 (COVID-19) on people with neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD). METHODS: The COVID-19 Infections in Multiple Sclerosis (MS) and Related Diseases (COViMS) Registry collected data on North American patients with MS and related diseases with laboratory-positive or highly suspected SARS-CoV-2 infection. Deidentified data were entered into a web-based registry by health care providers. Data were analyzed using t-tests, Pearson χ2 tests, or Fisher exact tests for categorical variables. Univariate logistic regression models examined effects of risk factors and COVID-19 clinical severity. RESULTS: As of June 7, 2021, 77 patients with NMOSD and 20 patients with MOGAD were reported in the COViMS Registry. Most patients with NMOSD were laboratory positive for SARS-CoV-2 and taking rituximab at the time of COVID-19 diagnosis. Most patients with NMOSD were not hospitalized (64.9% [95% CI: 53.2%-75.5%]), whereas 15.6% (95% CI: 8.3%-25.6%) were hospitalized only, 9.1% (95% CI: 3.7%-17.8%) were admitted to the ICU and/or ventilated, and 10.4% (95% CI: 4.6%-19.5%) died. In patients with NMOSD, having a comorbidity was the sole factor identified for poorer COVID-19 outcome (OR = 6.0, 95% CI: 1.79-19.98). Most patients with MOGAD were laboratory positive for SARS-CoV-2, and almost half were taking rituximab. Among patients with MOGAD, 75.0% were not hospitalized, and no deaths were recorded; no factors were different between those not hospitalized and those hospitalized, admitted to the ICU, or ventilated. DISCUSSION: Among the reported patients with NMOSD, a high mortality rate was observed, and the presence of comorbid conditions was associated with worse COVID-19 outcome. There were no deaths reported in the patients with MOGAD, although these observations are limited due to small sample size.


Subject(s)
Autoimmune Diseases of the Nervous System/mortality , COVID-19/mortality , COVID-19/therapy , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica/mortality , Registries , Adult , Aged , Autoimmune Diseases of the Nervous System/immunology , COVID-19/diagnosis , Comorbidity , Female , Hospitalization , Humans , Immunologic Factors/administration & dosage , Intensive Care Units , Male , Middle Aged , Neuromyelitis Optica/drug therapy , North America/epidemiology , Outcome Assessment, Health Care , Respiration, Artificial , Rituximab/administration & dosage
5.
IUBMB Life ; 73(6): 843-854, 2021 06.
Article in English | MEDLINE | ID: covidwho-1219298

ABSTRACT

The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , COVID-19/transmission , Heat-Shock Proteins/physiology , Neoplasm Proteins/physiology , Nerve Tissue Proteins/physiology , Receptors, Cell Surface/physiology , Receptors, Virus/physiology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Autoantibodies/immunology , Autoantigens/immunology , Autoimmune Diseases of the Nervous System/metabolism , Cell Survival , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Exosomes , GPI-Linked Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/immunology , Humans , Ligands , Neoplasm Invasiveness , Neoplasm Proteins/immunology , Nerve Tissue Proteins/immunology , Protein Domains , Protein Transport , Signal Transduction , Tumor Microenvironment , Unfolded Protein Response/physiology , Virus Internalization
6.
Neurol Neuroimmunol Neuroinflamm ; 7(5)2020 09.
Article in English | MEDLINE | ID: covidwho-810332

ABSTRACT

OBJECTIVE: To present the COVID-19-associated GBS, the prototypic viral-triggered autoimmune disease, in the context of other emerging COVID-19-triggered autoimmunities, and discuss potential concerns with ongoing neuroimmunotherapies. METHODS: Eleven GBS cases in four key COVID-19 hotspots are discussed regarding presenting symptoms, response to therapies and cross-reactivity of COVID spike proteins with nerve glycolipids. Emerging cases of COVID-19-triggered autoimmune necrotizing myositis (NAM) and encephalopathies are also reviewed in the context of viral invasion, autoimmunity and ongoing immunotherapies. RESULTS: Collective data indicate that in this pandemic any patient presenting with an acute paralytic disease-like GBS, encephalomyelitis or myositis-even without systemic symptoms, may represent the first manifestation of COVID-19. Anosmia, ageusia, other cranial neuropathies and lymphocytopenia are red flags enhancing early diagnostic suspicion. In Miller-Fisher Syndrome, ganglioside antibodies against GD1b, instead of QG1b, were found; because the COVID-19 spike protein also binds to sialic acid-containing glycoproteins for cell-entry and anti-GD1b antibodies typically cause ataxic neuropathy, cross-reactivity between COVID-19-bearing gangliosides and peripheral nerve glycolipids was addressed. Elevated Creatine Kinase (>10,000) is reported in 10% of COVID-19-infected patients; two such patients presented with painful muscle weakness responding to IVIg indicating that COVID-19-triggered NAM is an overlooked entity. Cases of acute necrotizing brainstem encephalitis, cranial neuropathies with leptomeningeal enhancement, and tumefactive postgadolinium-enhanced demyelinating lesions are now emerging with the need to explore neuroinvasion and autoimmunity. Concerns for modifications-if any-of chronic immunotherapies with steroids, mycophenolate, azathioprine, IVIg, and anti-B-cell agents were addressed; the role of complement in innate immunity to viral responses and anti-complement therapeutics (i.e. eculizumab) were reviewed. CONCLUSIONS: Emerging data indicate that COVID-19 can trigger not only GBS but other autoimmune neurological diseases necessitating vigilance for early diagnosis and therapy initiation. Although COVID-19 infection, like most other viruses, can potentially worsen patients with pre-existing autoimmunity, there is no evidence that patients with autoimmune neurological diseases stable on common immunotherapies are facing increased risks of infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/etiology , Myositis/diagnosis , Myositis/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Aged , Aged, 80 and over , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/etiology , Autoimmune Diseases of the Nervous System/immunology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Female , Guillain-Barre Syndrome/immunology , Humans , Male , Myositis/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL